

1

BUILDING AN AUTOMATED PIPELINE FOR
SECURITY AND FUNCTIONAL TESTING ON
WEBAPPLICATIONS

Realization

Thierry Eeman
R0242545

Bachelor Applied Computer Science

Academiejaar 2022-2023

Campus Geel, Kleinhoefstraat 4, BE-2440 Geel

2

TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

ABSTRACT .. 4

1 ACKNOWLEDGEMENTS ... 5

2 TERMINOLOGY ... 6

3 FIGURES AND DIAGRAMS ... 7

4 INTRODUCTION ... 8

5 PRESENTING RESILLION .. 9

6 PROJECT SCOPE ... 10

6.1 Description ... 10
6.2 Timetable ... 10
6.3 Deliverables ... 12

7 BUILDING AN AUTOMATED PIPELINE FOR SECURITY AND

FUNCTIONAL TESTING ON WEBAPPLICATIONS 14

7.1 Introduction ... 14
7.2 Used Technologies ... 14

7.2.1 Docker .. 14
7.2.2 Selenium .. 15
7.2.3 Selenium Grid .. 16
7.2.4 Java ... 17
7.2.5 Maven .. 18
7.2.6 OWASP ZAP ... 18
7.2.7 Ansible ... 20
7.2.8 Defect Dojo ... 21
7.2.9 Azure Devops .. 22

7.3 Orientation and Security Research ... 22
7.4 Choosing the right vulnerability scanning tool 23
7.5 Setting up the architecture for the project ... 25

7.5.1 A schematic for the entire architecture.. 25
7.5.2 Full explanation of the schematic and the link between

components .. 25
7.6 Application containers and Java implementation 26

7.6.1 Creating a Docker network .. 26
7.6.2 Configuring OWASP ZAP .. 27
7.6.3 Creating a Selenium Grid .. 30
7.6.4 Writing Java Classes to instantiate web drivers 31

7.7 Working on a live project ... 33
7.7.1 OWASP Juice Shop ... 33
7.7.2 Greenvalley Project .. 34

7.8 Scalability through generalization.. 34
7.8.1 Maven Artifact ... 34
7.8.2 Java builder pattern ... 36

7.9 Dashboarding tools research.. 38
7.9.1 Dashboard tool requirements ... 38
7.9.2 Application Comparison ... 39
7.9.3 Defect Dojo ... 40

7.10 CI/CD pipeline integration ... 41
7.10.1 Docker restart policy .. 41
7.10.2 Ansible Deployment .. 41
7.10.3 Release pipeline on Azure Devops .. 43

3

7.11 Future project goals ... 46
7.11.1 Expandibility to other projects/languages .. 46
7.11.2 Using Burp Suite instead of OWASP ZAP ... 46
7.11.3 Report portal and Surefire fix for parallel testing 46
7.11.4 CI/CD streamlining (automated importing in Defect Dojo) 46
7.11.5 Linking vulnerabilities to specific tests .. 47
7.11.6 DefectDojo on company level... 47

8 BIBLIOGRAPHY .. 48

4

ABSTRACT

This thesis is written based on the internship of Thierry Eeman at Eurofins

Digital Testing Hasselt and was created to graduate at Thomas More Hogeschool

Geel, Belgium, as a bachelor Applied Computer Science. The subject of this

internship is creating a link between automated functional testing of

webapplications and cyber security testing and create an elegant solution to

tackle both challenges at once using existing tools and frameworks.

First off, a scope needed to be set to fit the timeframe that would fit within the

duration of the internship which was set to three months.

After determining the scope of the project, the first step was to perform a study

and create an overview of all the components needed to deliver this project.

After initial interviews with Pieter Meulenhoff, a cyber security expert who

served as a project consultant and product owner, I was able to distill the

requirements and MVP for the project. I then created the scope of the project in

a document with a description of all the tasks at hand, a time table and also a

number of deliverables linked to markers in the time table. This also resulted in

a complete architectural overview of the components for this project.

After creating the whole architecture, the first step was to set up all the

individual components and create configurations to let them work and

communicate together. A Selenium Grid was needed to automate parallel

testing. This Grid needed to pass all traffic via an intercepting proxy to the

internet. This proxy would collect all data and make it accessible through an

API, which allows any dashboarding tool to collect the data for display and

processing.

Once all the systems were operational, I needed to pass actual test runs

through the Grid and proxy. In order to do so, I created a Maven artifact that

can be imported in other projects. The purpose of the library was to provide low

intrusion in the existing codebase. Web drivers are usually created in one single

line of code and my library provides a way to choose the right browser with the

right settings in one line. Finally I used an existing internal test project on a web

application.

5

1 ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to Resillion. The

company provided me with an excellent platform to undertake this internship

project, and the opportunity to learn and grow within such a dynamic and

progressive environment has been an invaluable experience.

To Martijn Degrève, the head of SQS, I extend my heartfelt thanks. Your

incredible technical guidance has been instrumental in my understanding of

writing efficient tests. Your passion and knowledge have greatly enriched my

internship experience.

My appreciation extends to Tiziana Treccase, a part of the HR team who showed

immense interest in our progress and consistently ensured our well-being

throughout the project. Your support has been a source of comfort and

motivation, making the internship experience more rewarding.

I am profoundly thankful to Pieter Meulenhoff, advisor at Eurofins Cyber

Security. As both product owner and technical support, your invaluable insights

on security and the resources you provided played a pivotal role in navigating

the complexities of the project. Your mentorship has deepened my

understanding of cyber security, for which I am immensely grateful.

I would like to express my sincere thanks to Caroline Vanderheyden, our

internship supervisor, for her constant support and guidance. Your regular

check-ins and preparation for the final jury presentation were instrumental in

our progress and ensured a smooth journey throughout the internship.

Last but not least, I would like to acknowledge Jonas Claes, my fellow student

and a hub of knowledge, whose insights and assistance in troubleshooting

during various stages of the project have been invaluable. Your camaraderie and

support made the process much more engaging and enjoyable.

Each of you has contributed to making my internship a rich and enlightening

experience, and for that, I am deeply grateful.

6

2 TERMINOLOGY

CSRF

Cross-Site Request Forgery, an attack that forces

authenticated users to submit a request to a Web

application against which they are currently

authenticated

ZAP Zed Attack Proxy

CI Continuous Integration

CD Continuous Deployment

Npm Node Package Manager

OWASP Open Web Application Security Project

Proxy
a type of software testing that checks if a system

meets specified requirements

Functional testing
a method of testing that systematically tries all

possible inputs or combinations

Brute force testing
a method of testing that systematically tries all

possible inputs or combinations

API

Application Programming Interface, which allows

different software applications to communicate and

interact with each other

7

3 FIGURES AND DIAGRAMS

Figure 1 - Logo Resillion ... 9
Figure 2 - Logo Docker .. 14
Figure 3 – Logo ... 15
Figure 4 - Logo Selenium Grid .. 16
Figure 5 - Logo Java .. 17
Figure 6 - Logo Maven ... 18
Figure 7 - Logo Owasp Zap ... 18
Figure 8 - Logo Ansible .. 20
Figure 9 - Logo Defect Dojo .. 21
Figure 10 - Logo Azure Devops ... 22
Figure 11 - Project Architecture Schematic ... 25
Figure 12 - Docker Network .. 27
Figure 13 - OWASP ZAP Headless mode GUI ... 27
Figure 14 - OWASP ZAP API key .. 28
Figure 15 - OWASP ZAP API json ... 28
Figure 16 - Java Class to configure ZAP context .. 30
Figure 17 - Selenium Grid .. 30
Figure 18 - Selenium Grid node Docker compose .. 31
Figure 19 - Java Class general RemoteWebDriver .. 32
Figure 20 - Maven Artifact (Azure Devops) ... 35
Figure 21 - Gridbuilder Artifact overview .. 36
Figure 22 – Builder design pattern examples .. 37
Figure 23 - Builder optional methods ... 37
Figure 24 - Session builder in Greenvalley code .. 38
Figure 25 - Defect Dojo main view... 40
Figure 26 - Defect Dojo vulnerability overview .. 41
Figure 27 - Ansible vars.yml ... 42
Figure 28 - Ansible config file .. 42
Figure 29 - Ansible Playbook ... 43
Figure 30 - Release setup and stages... 44
Figure 31 - Release jobs ... 45
Figure 32 - Successful releases upon repository update 45

file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684662
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684663
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684664
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684665
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684666
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684667
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684668
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684669
file:///D:/Thomas%20More%20IT/Schooljaar%2022-23/Internship/Einddocumentatie/Realisatiedocument.docx%23_Toc137684670

8

4 INTRODUCTION

In the ever-evolving technological landscape, software systems have become an

integral part of daily life, underpinning critical infrastructure, finance,

healthcare, and more. Ensuring the reliability and security of these systems is

not just desirable, but essential. This thesis focuses on the integration of

security vulnerability testing into an existing automated functional testing

project — a step that is crucial in building robust, secure, and reliable software

systems.

Functional testing and security testing each play a pivotal role in the software

development lifecycle. Functional testing verifies that each function of the

software operates in conformance with the requirement specification. This

process ensures that the software system is doing what it is supposed to do and

that all components are working together harmoniously. It is a critical step in

maintaining high software quality and in preventing defects that could lead to

system failures, data loss, or user dissatisfaction.

On the other hand, security testing aims to uncover vulnerabilities, threats, risks

in a software system that could potentially be exploited. As the impact of

security breaches continues to escalate—both in terms of financial costs and

reputation damage—the importance of security testing cannot be overstated. A

solid security testing process helps in identifying weak spots in a system's

security framework and in taking the necessary preventive measures.

Resillion, with its two branches in Hasselt, Belgium and Groningen, The

Netherlands, has the unique opportunity to bridge the gap between functional

and security testing. The Belgium branch's expertise in functional testing and

the Holland branch's specialization in security testing can be leveraged to create

a more comprehensive, holistic approach to software testing.

By integrating these two domains, Resillion can ensure not only that software

functions as expected but also that it is secure from potential threats. This

would minimize the risk of security breaches and improve overall software

quality. The collaboration between these two branches would foster knowledge

sharing and skill enhancement, enriching the expertise within the company.

Moreover, the integration would lead to efficiency in testing processes and

reduce costs. By incorporating security testing within the functional testing

framework, the company could save resources that would otherwise be spent

conducting these tests independently. This synergy between the departments

would also streamline communication and coordination, reducing the potential

for misunderstandings or missed vulnerabilities.

This internship sets out to explore the practical and theoretical aspects of this

integration, aiming to provide a framework that can be used as a guideline for

similar projects in the future. By doing so, I hope to contribute to the creation of

software systems that are not only functional but also secure, furthering the

mission of producing reliable, trustworthy technology for all users.

9

5 PRESENTING RESILLION

Figure 1 - Logo Resillion

Resillion is a global leader in testing and quality engineering services, with a

focus on cyber security, digital media content testing, and quality assurance.

The company was born from the expertise of Eurofins Scientific’s Digital Testing,

Cyber Security, Digital Forensics, and Content divisions, bringing together over

700 experts passionate about making IoT work and delivering top-tier testing

technologies. They provide end-to-end capabilities regardless of your industry or

stage in the digital journey, promising to guide you through to market.

The expert team of Eurofins Digital Testing, consisting of specialists in various

disciplines, works closely with clients to understand their specific needs and

offer customized solutions that ensure optimal performance, safety, and

efficiency of their digital systems. This is achieved by delivering a wide range of

services and solutions aimed at maintaining the highest quality standards in the

industry.

A crucial aspect of Eurofins Digital Testing's work is designing and conducting

tests to assess the performance and safety of digital products and services. This

could, for example, involve testing the speed at which a device connects to the

internet, or evaluating the security measures taken to protect sensitive data

from unauthorized access.

In addition, Eurofins Digital Testing offers quality assurance services that help

companies identify and resolve any issues that may arise during the

development and implementation of their digital products and services. This can

range from analyzing the usability of an application or website, to checking the

compatibility of a device with various operating systems and networks.

As part of their comprehensive service offering, Eurofins Digital Testing also

assists companies in complying with national and international regulations and

standards, and in developing products and services that are compatible with

existing systems and devices. This allows companies to remain competitive in an

ever-changing market and adapt to the growing demands of consumers and

business customers.

In terms of Cyber Security, the company's Netherlands branch is at the forefront

of providing comprehensive cyber security services. They strive to protect,

detect, respond, and recover from evolving threats to safeguard organizations.

Their team of experts use cutting-edge tools and methodologies to identify

vulnerabilities, provide solutions, and improve & integrate cyber security within

organizations. This covers a range of activities across the lifecycle, such as

security assessments, risk management, managed services, emergency

response, and security engineering.

10

6 PROJECT SCOPE

6.1 Description

Title BUILDING AN AUTOMATED PIPELINE FOR SECURITY

AND FUNCTIONAL TESTING ON WEBAPPLICATIONS

Project
Justification

During my internship at Resillion, I will work on a

project to integrate functional and security testing

within the CI/CD pipeline and develop a

comprehensive dashboard for presenting test results.

This integration aims to enhance efficiency, optimize

resources, and improve the quality and security of

software applications.

In the current setting, functional and security testing

are often conducted separately, which can lead to

inefficiencies and potential overlook of certain

vulnerabilities. Manual investigation by security

testers is time-consuming and can distract from more

complex tasks. Additionally, current reporting

methods may not be sufficient to effectively expose

and communicate vulnerabilities.

Our proposed solution involves leveraging automation

to integrate functional and security testing in the

CI/CD pipeline. We also aim to develop a more

sophisticated dashboard and reporting application

that exposes vulnerabilities detected during test runs

in an intuitive and user-friendly manner.

6.2 Timetable

Timetable My internship project at Resillion will be structured

into six distinct phases, each with its own objectives

and duration. This systematic approach will ensure

the effective execution of tasks and the timely

delivery of project milestones.

In phase 1, which will last for a week, I will meet my

two mentors who will guide me through the crucial

aspects of the project, namely test automation and

cyber security. We will establish a schedule for

weekly meetings, allowing for consistent follow-up

and feedback. Together, we will define the scope of

the project and determine the minimum viable

product (MVP) to be delivered by the end of the

internship.

Phase 2, spanning over two weeks, will be dedicated

to familiarization and investigation. I will familiarize

myself with the tools used internally at Resillion to

understand the proper workflow. I will also delve into

11

the field of cyber security, particularly Static

Application Security Testing (SAST) and Dynamic

Application Security Testing (DAST), to decide how

best to approach the project. Furthermore, I will

explore automated test frameworks and their

potential interaction with vulnerability scanning.

During the two-week phase 3, I will experiment with

various existing applications or solutions to

understand what works well and what doesn't. I will

select the appropriate tools for the project and

develop a theoretical architecture that will allow the

different components to interact with each other. I

will then visualize this architecture and its

components in a schematic diagram.

In phase 4, lasting another two weeks, I will focus on

configuration and exploration. I will set up the basic

building blocks of the project and explore their

capabilities. I will investigate how vulnerabilities are

captured, including their format and information, and

how this can be retrieved via an API. I will also learn

how to address these components through code and

conduct tests on a dummy website.

Phase 5 will be about upscaling and refinement over

a period of three weeks. I will scale the architecture

from a local setup to a server environment, rewrite

code to make it expandable and easy to implement

beyond the initial setup, and look for an existing

Resillion project to test the scanning process. This

phase will also involve further configuration of

containerized applications to suit a server

environment.

Finally, in phase 6, also spanning three weeks, I will

implement and evaluate the setup. I will test it on an

existing Resillion project, evaluate various

vulnerability dashboarding tools for visualization, and

streamline the entire project in a Continuous

Integration/Continuous Deployment (CI/CD) pipeline.

Lastly, I will create documentation on the repository

to ensure the sustainability and scalability of the

project.

Through this structured and phased approach, I am

confident I will be able to accomplish my project

goals and deliver a viable product by the end of my

internship at Resillion.

12

6.3 Deliverables

Deliverables 1. Project Scope

Will consist of:

- Project title

- Project justification

- Project scope

- List of deliverables

2. Security research document

Will consist of:

- SAST & DAST research

- OWASP and CWE numbers research

3. Project Architecture

Will consist of:

- Architectural schematic

- Declaration of the interaction of the

separate components

- Used technologies list

4. Local application containers and Java

implementation

Will consist of:

- Docker compose files for the different

components

- Java Classes

5. Scalability through generalization

Will consist of:

- Maven Artifact to use library in other

projects

- Java Classes with builder pattern for better

usability

6. Dashboarding tools research

Will consist of:

- Dashboard tool requirements

- Comparison between existing applications

13

7. CI/CD pipeline integration

Will consist of:

- Deployment through Ansible

- Release pipeline on Azure Devops

8. End report

Will consist of:

- Scope of the project

- Project Architecture

- Local application containers and Java

implementation

- Scalability through generalization

- Dashboarding tools research

- CI/CD pipeline integration

- Bibliography

14

7 BUILDING AN AUTOMATED PIPELINE

FOR SECURITY AND FUNCTIONAL

TESTING ON WEBAPPLICATIONS

7.1 Introduction

7.2 Used Technologies

7.2.1 Docker

Docker is a software platform that allows

developers to package, distribute, and run

applications in a containerized environment.

Containers are lightweight, standalone

executable packages that include everything

an application needs to run, such as code,

runtime, system tools, libraries, and

settings.

Docker provides a standardized way to package and distribute applications,

regardless of the underlying infrastructure. This makes it easier for developers

to deploy their applications across different environments, such as on-premises,

public or private cloud, or hybrid environments.

Docker also provides tools for managing containers, such as Docker Compose

for orchestrating multiple containers, and Docker Swarm for clustering and

scaling containerized applications.

Some benefits of using Docker include:

• Portability: Docker containers can be run on any platform that supports

Docker, making it easy to move applications between development,

testing, and production environments.

• Consistency: Docker containers ensure that applications run the same

way across different environments, eliminating compatibility issues and

improving reliability.

• Efficiency: Docker containers are lightweight and require fewer

resources than traditional virtual machines, enabling better resource

utilization and cost savings.

• Scalability: Docker containers can be easily scaled up or down to meet

changing demand, making it easy to manage and scale applications.

Overall, Docker provides developers with a powerful set of tools for building,

packaging, and deploying applications, making it easier and more efficient to

develop and manage modern applications.

The key components of a Docker container are:

• Docker image: A Docker image is a read-only template that contains

instructions for creating a Docker container. It includes the application

code, runtime, system tools, libraries, and dependencies needed to run

the application.

Figure 2 - Logo Docker

15

• Container Runtime: The Docker runtime is responsible for running the

Docker container. It is the process that creates, starts, stops, and

manages the lifecycle of the container.

• Filesystem: A Docker container has its own filesystem, which is isolated

from the host operating system. The filesystem contains the application

code and all its dependencies.

• Network: Docker containers have their own network interface, which

allows them to communicate with other containers and the outside world.

Each container has a unique IP address, and Docker provides various

network options for connecting containers.

• Environment Variables: Environment variables are used to configure

the behavior of a Docker container. They can be set at runtime and are

used to pass configuration information to the application inside the

container.

• Docker Registry: A Docker registry is a storage and distribution system

for Docker images. It allows developers to share and distribute their

Docker images with others, either publicly or privately.

• Overall, these components work together to create a self-contained,

portable environment that allows applications to run consistently across

different environments.

For this project, the use of more complex multi-container Docker applications is

required. These will be created using a docker-compose YAML file. The basic

setup of a docker-compose.yml file includes:

• version: The version of the Docker Compose file syntax being used. This

should be the first line of the file and is required.

• services: A list of services to be run as containers, with each service

representing a separate container. Each service has its own set of

configuration options, such as the image to be used, ports to be exposed,

environment variables to be set, and volumes to be mounted.

• networks: An optional section that defines custom networks to be used

by the services.

• volumes: An optional section that defines named volumes or bind

mounts to be used by the services.

7.2.2 Selenium

Selenium is an open-source automation tool that is widely

used for automating web applications. It allows you to

automate web browsers like Chrome, Firefox, Safari, and

others, to carry out functional and regression testing of web

applications.

Selenium can interact with the web page like a user does. It

can perform tasks such as clicking on buttons, filling out

forms, and navigating through web pages. Additionally,

Selenium can handle alerts, pop-ups, and multiple windows. It

can also simulate user behavior, such as scrolling, hovering over elements, and

dragging and dropping.

Selenium supports a variety of programming languages, including Java, Python,

C#, Ruby, and JavaScript. This makes it a popular choice among developers and

testers with different programming backgrounds.

Selenium is not limited to just automating web applications. It can also be used

for web scraping, web crawling, and for automating repetitive tasks on the web.

Figure 3 – Logo
 Selenium

16

Overall, Selenium is a powerful automation tool that enables developers and

testers to improve the quality of web applications while reducing the time and

effort required for manual testing.

XPath is a language used to locate elements within an HTML or XML document.

It is commonly used in Selenium to identify and interact with web elements on a

web page. XPath expressions can be used to select web elements based on their

attributes such as ID, class name, name, text, or any other attribute that

uniquely identifies the element.

When using Selenium, you can use XPath expressions to find elements on a web

page using the find_element_by_xpath method. For example, if you want to

locate a button with the text "Click me", you could use the following XPath

expression:

//button[text()='Click me']

This expression will select all button elements that have the exact text "Click

me". Once you have selected the element using an XPath expression, you can

interact with it by clicking it, sending text to it, or performing any other actions

that Selenium supports.

XPath can also be used to locate elements relative to other elements on the

page, or to locate elements within a specific section of the page. This can be

useful when working with complex web pages that have a large number of

elements. In such cases, XPath can help you write precise and efficient selectors

to locate the elements you need to interact with.

7.2.3 Selenium Grid

Selenium Grid is a tool that allows you to run

Selenium tests across multiple machines and

browsers in parallel. It allows you to distribute

tests across multiple servers and run them

simultaneously, which can significantly reduce

the time it takes to execute your tests.

Selenium Grid consists of a hub and multiple nodes. The hub acts as a central

point that manages the distribution of test cases to different nodes. Nodes are

machines that run the Selenium WebDriver instances and execute the tests in

different browsers and operating systems.

To use Selenium Grid, you need to set up a hub and at least one node. Once the

hub and nodes are set up, you can configure your test scripts to communicate

with the hub, which will route the test requests to the available nodes based on

their capabilities. For example, if you have a test script that needs to run in

Chrome, the hub will find a node that has Chrome installed and route the test to

that node.

Selenium Grid also allows you to specify the number of instances of a particular

browser to run in parallel on a single node. For example, if you have a test suite

that requires 10 instances of Firefox, you can configure the node to run 10

instances of Firefox at the same time.

Figure 4 - Logo Selenium Grid

17

Overall, Selenium Grid is a powerful tool that enables you to run your Selenium

tests on multiple machines and browsers in parallel, reducing the time required

to run your test suite and improving your test coverage. It is particularly useful

for organizations that need to test their web applications across multiple

browsers and operating systems.

7.2.4 Java

Java is a high-level, class-based, object-oriented

programming language that is designed to have as

few implementation dependencies as possible. It was

developed by Sun Microsystems (now owned by

Oracle Corporation) and was first released in 1995.

Java applications are typically compiled to bytecode that can run on any Java

virtual machine (JVM) regardless of the underlying computer architecture. This

makes Java a portable language, as applications written in Java can run on

various types of devices and operating systems.

Key Characteristics and Features of Java:

• Platform Independent: Java is platform-independent because when

you compile a Java program, it is compiled into bytecode. This bytecode

can be interpreted on any device with a JVM. This means you can write a

Java program once and run it anywhere that has a JVM, a principle often

summarized as "write once, run anywhere" (WORA).

• Object-Oriented: Java is an object-oriented language, which means it

represents concepts as "objects" that have data fields (attributes) and

associated procedures known as methods. Object-oriented programming

is designed to reduce complexity and improve maintainability of code.

• Strongly Typed: Java is a strongly typed language. This means that

every variable and expression has a type that is known at compile-time,

and all assignments, whether explicit or via parameter passing in method

calls, are checked for type compatibility.

• Multithreaded: Java supports multithreading, which allows multiple

sequences of code (threads) to run concurrently within a single program.

This is a powerful feature for building complex, high-performance

applications.

• Secure: Security is a key consideration in Java. The Java platform allows

users to download untrusted code over a network and run it in a secure

environment in which it cannot do any harm: it cannot infect the host

system with a virus, cannot read or write files from the hard drive, etc.

• Robust: Java has strong memory management, automatic garbage

collection, exceptions, type-checking at compile time, and the absence of

explicit pointers, which all contribute to the robustness of Java

applications.

• Large Standard Library: Java has a rich set of standard class libraries

that provide powerful and flexible data structures, algorithms, and

utilities.

Java is widely used in various domains like web applications, enterprise

software, embedded systems, mobile applications (notably Android apps), and

more. The longevity and popularity of the language mean that there is a large

community of Java developers and a wealth of online resources for learning and

troubleshooting Java programming.

Figure 5 - Logo Java

18

7.2.5 Maven

Maven is a powerful project management tool that

is primarily used for Java projects. Developed by

the Apache Software Foundation, Maven is used for

project build automation, dependency management,

and documentation. Its default build lifecycle

comprises stages like validate, compile, test, package, install, and deploy.

Here's a brief explanation of some of the key features of Maven:

• Build Automation: Just like other build tools like Ant and Gradle, Maven

can be used to compile source code, run tests, package the compiled

code into a JAR or WAR file, install the packaged code in the local Maven

repository, and deploy the packaged code in a remote repository or a

server.

• Dependency Management: One of the biggest advantages of using

Maven is its dependency management. You can declare your project's

dependencies (i.e., JAR files or libraries your project needs) in the

pom.xml file, and Maven automatically downloads them from the central

Maven repository and places them in your local repository. If the

dependencies have their own dependencies (transitive dependencies),

Maven resolves them too.

• Convention Over Configuration: Maven follows the principle of

convention over configuration. This means Maven comes with sensible

defaults for your project structure. For example, it assumes that your

Java source code is in a directory named "src/main/java", tests are in

"src/test/java", and so on. Because of these conventions, a Maven

project can be set up quickly without much configuration.

• Lifecycle: Maven has a lifecycle for building projects. This includes

phases like validate, compile, test, package, install, and deploy. When

you run a Maven command, you're actually running a lifecycle phase. For

example, when you run the "mvn install" command, you're running the

install phase of the lifecycle. Each phase includes a series of goals, and

these goals are responsible for specific tasks.

• Plugins: Maven uses plugins to perform its tasks. For example, the

Compiler Plugin compiles source code files, the Surefire Plugin runs tests,

and the JAR Plugin packages compiled code into a JAR file. You can add

and configure plugins

7.2.6 OWASP ZAP

The OWASP Zed Attack Proxy (ZAP) is one of

the world's most popular free, open-source web

application security testing tools. It is actively

maintained by hundreds of international

volunteers and is a flagship project of the Open

Web Application Security Project (OWASP), a

worldwide not-for-profit charitable organization

focused on improving the security of software.

ZAP is used for finding security vulnerabilities in web applications during the

development and testing phase. It can also be used for manual security testing

by developers and security professionals.

Here are some of the key features of OWASP ZAP:

Figure 6 - Logo Maven

Figure 7 - Logo Owasp Zap

19

• Intercepting Proxy: ZAP operates as a man-in-the-middle proxy,

allowing you to intercept and modify the traffic passing between a client

(usually your web browser) and a web application.

• Automated Scanner: ZAP can automatically scan applications for

common security vulnerabilities like SQL Injection, Cross-Site Scripting

(XSS), and others.

• Passive Scanner: Without actively probing or attacking the application,

ZAP's passive scanner can analyze traffic to and from the application and

identify potential security issues.

• Spidering and AJAX Spidering: ZAP can crawl an application to

discover its structure and content, including AJAX-based content, thereby

identifying additional areas for testing.

• Forced Browsing: ZAP includes a fuzzer, which can be used for brute-

force testing of application parameters to identify hidden files and

directories.

• WebSockets: ZAP supports WebSocket communication and allows users

to view, intercept, and modify WebSocket messages.

• Scripting: ZAP supports various scripting languages, enabling

customization of scanning rules, active and passive scans, and more.

• Port Scanning: It can also perform port scanning to identify additional

attack surfaces.

• Authentication and Session Support: ZAP can understand and

manipulate application-level authentication and session management,

allowing it to perform access control testing.

• EST API: ZAP provides a REST API that allows you to interact with ZAP

programmatically, integrating it into your continuous

integration/continuous deployment (CI/CD) pipelines.

The ZAP tool is widely used by application developers, quality assurance testers,

and professional penetration testers. It's also a good tool for those new to web

application security and provides a wide range of resources, including a

comprehensive wiki, a broad selection of guided videos, and a user group for

help and support.

OWASP stands for the Open Web Application Security Project. It is an open

community dedicated to enabling organizations to develop, purchase, and

maintain applications and APIs that can be trusted. OWASP's mission is to make

software security visible, so that individuals and organizations worldwide can

make informed decisions about true software security risks.

OWASP is a non-profit organization and all of its materials are available under a

free and open software license. It provides unbiased, practical, cost-effective

information about computer and Internet applications, and it has become a

reputable source of information about application security.

Here are some of the main activities and resources provided by OWASP:

• OWASP Top 10: Perhaps the most widely known OWASP project, the

OWASP Top 10 is a regularly-updated report outlining the ten most

critical security risks to web applications. It serves as a starting point for

organizations aiming to improve their application security.

• Software Tools and Documentation: OWASP develops and provides

free tools, standards, and guidelines that are used by organizations

around the world to improve the security of their software. Examples

include the ZAP (Zed Attack Proxy), a popular tool for identifying

vulnerabilities in web applications, and the Application Security

Verification Standard (ASVS), a framework for security requirements.

20

• Community: OWASP promotes a global community approach to tackling

application security. Its community includes corporations, educational

organizations, and individuals from around the world. It organizes local

chapters, conferences, and seminars where security professionals can

share their knowledge and experiences.

• Education: OWASP has a significant educational focus. It provides

training, tutorials, videos, and other educational materials to help

individuals and organizations understand and improve application

security.

• Research: OWASP also engages in research into application and web

security, helping to advance the industry's knowledge and capability in

these areas.

In summary, OWASP is a critical resource in the world of application security,

providing tools, documentation, and community resources to help improve the

security of software worldwide.

7.2.7 Ansible

Ansible is an open-source software provisioning, configuration

management, and application-deployment tool. It was

developed and is maintained by Red Hat. Ansible is designed

to help automate the often complex process of deploying and

managing software, especially in a large, networked

environment.

Here are some key points about Ansible:

• Provisioning: Ansible can set up the various servers your applications

need to run on.

• Configuration Management: Ansible can manage the configuration of

your servers, ensuring they maintain the desired state. It can install or

update software, start or stop services, or apply system updates across

all your servers, among other tasks.

• Application Deployment: Ansible can deploy applications to your

servers, ensuring that all dependencies are managed and the correct

versions of each piece of software are used.

• Automation: Ansible lets you automate all these processes, which not

only saves time and effort but also ensures consistency and reduces the

potential for human error.

• YAML for Playbooks: Ansible uses a simple language (YAML, in the

form of Ansible Playbooks) that allows you to describe automation jobs in

a way that approaches plain English.

• Agentless: Unlike some other configuration management tools, Ansible

is agentless, meaning you don’t need to install any additional software on

the nodes that Ansible manages. It communicates over SSH for Unix-

based systems or WinRM for Windows systems and pushes small

programs called "Ansible modules" to the nodes.

• Idempotency: Ansible tasks are idempotent, meaning you can run the

same tasks multiple times but the outcome will always be the same, i.e.,

they will bring the target system to the desired state without overwriting

the existing state if it's already in the desired state.

• Large Collection of Modules: Ansible comes with a large set of

modules (small, reusable programs) that can be used to manage various

Figure 8 - Logo Ansible

21

parts of your system, such as files, databases, cloud infrastructure,

network devices, etc.

• Inventory: Ansible uses an inventory file to track which servers it

manages. This file can be in various formats, like INI or YAML.

Ansible is particularly popular for its simplicity and ease of use, as well as its

ability to enable infrastructure as code (IaC). This allows system configurations

to be versioned and treated as you would any other code, facilitating

collaboration and maintaining a historical record of changes.

7.2.8 Defect Dojo

DefectDojo is an open-source application that was developed by the security

team at Pearson and is currently maintained by the OWASP Foundation. It is a

tool designed to help manage security testing

efforts, specifically in the field of application

security.

DefectDojo allows you to manage your application

security testing program from a single place. It

integrates with various scanning tools and provides

a centralized space to manage the results. It is

specifically designed to facilitate security testing

throughout the software development lifecycle (SDLC).

Here are some key features of DefectDojo:

• Import Scanning Results: DefectDojo can import results from a wide

range of security tools, including static analysis tools, dynamic analysis

tools, dependency checkers, and more. This allows you to bring together

results from multiple tools in one place.

• Track and Manage Findings: DefectDojo helps you manage and track

the findings from your security tools, keeping all your application security

information in one place. You can assign, track, and get the status of

findings.

• Product Metrics: DefectDojo provides metrics and trend analysis, which

can help you understand the security posture of your applications over

time. This can provide valuable insights and help you make informed

decisions about where to focus your security efforts.

• Risk Management: It allows risk-based prioritization of findings, which

can be helpful in determining what issues to tackle first.

• Integration with JIRA: DefectDojo has built-in integration with JIRA,

which means you can create and update JIRA tickets directly from within

the tool.

• Test Management: DefectDojo can be used to manage security tests

for each of your software releases, keeping a record of what tests were

performed and what findings were identified.

• Endorsements and Reviews: Users can endorse findings, and findings

can be peer reviewed with a history of the conversation and changes.

DefectDojo is a tool designed to be used by security teams, developers, and

managers to facilitate the tracking and resolution of identified security issues. It

is flexible and can adapt to various types of security testing methodologies.

Figure 9 - Logo Defect Dojo

22

7.2.9 Azure Devops

Azure DevOps is a suite of development collaboration tools

created by Microsoft. It provides an integrated set of

features that you can access through your web browser or

IDE client. It was formerly known as Visual Studio Team

Services (VSTS) but was rebranded as Azure DevOps in

September 2018.

The Azure DevOps suite consists of several key features:

• Azure Boards: This is a powerful work tracking system that uses the

Scrum and Kanban methodologies. It provides a rich set of capabilities

including native support for Scrum and Kanban, customizable

dashboards, and integrated reporting. It can track tasks, bugs, and

features to support project management and agile software

development.

• Azure Repos: This is a version control system that provides two types

of version control: Git and Team Foundation Version Control (TFVC). It's

a set of version control tools that can track code changes and help

manage code history.

• Azure Pipelines: This is a continuous integration (CI) and continuous

delivery (CD) platform that can automatically build and test your code

project and make it available to other users. It supports most popular

languages and project types, and can deploy to a variety of targets

including Azure itself, other cloud platforms, on-premises systems, or

even mobile app stores.

• Azure Test Plans: This is a solution for tests and capturing data about

defects. It provides a comprehensive toolkit for planning, tracking, and

discussing tests within your team.

• Azure Artifacts: This is a package management resource that allows

teams to share Maven, npm, and NuGet packages. It integrates with

your CI/CD pipeline for easy use and access.

These tools are deeply integrated and extensible, and they cover the entire end-

to-end development lifecycle. They can be used together for a unified

experience, or individually based on the needs of the team or organization.

Azure DevOps supports both public and private cloud configurations and is used

by developers and businesses of all sizes.

7.3 Orientation and Security Research

Since I walked into this project without any prior security knowledge, it was

mandatory for me to gather some information on the subject. I asked a few CCS

students at Thomas More for valuable resources

SAST, or Static Application Security Testing, is a type of security testing that is

performed on a static code base (i.e., the code is not being executed). SAST is

often referred to as "white box testing" because it requires knowledge of the

code being tested. The goal of SAST is to analyze the source code, byte code, or

binary code of an application for security vulnerabilities. It can identify issues

such as input validation errors, code injection vulnerabilities, and more. The

advantage of SAST is that it can find vulnerabilities early in the development

Figure 10 - Logo Azure Devops

23

lifecycle, when they are typically cheaper and easier to fix. Examples of SAST

tools include SonarQube, Checkmarx and Veracode Static Analysis

DAST, or Dynamic Application Security Testing, is a type of security testing that

is performed while the application is running in its operational state. DAST is

often referred to as "black box testing" because it does not require knowledge of

the underlying code. DAST tools interact with the application, mimicking the

behaviors of an attacker, in order to identify security vulnerabilities. These can

include issues such as cross-site scripting (XSS) vulnerabilities, SQL injection

vulnerabilities, and more. Examples of DAST tools include OWASP ZAP, Nessus

and Acunetix.

It's important to note that SAST and DAST are complementary techniques. SAST

is typically used early in the development process, while DAST is used after the

application has been deployed. Using both approaches together provides a more

comprehensive assessment of an application's security.

7.4 Choosing the right vulnerability scanning

tool

All of these tools are used in the domain of cybersecurity but serve different

purposes. Here's a brief comparison based on their primary uses,

characteristics, and licensing:

• OWASP ZAP (Zed Attack Proxy):

o Use: Primarily used for finding vulnerabilities in web applications.

It includes functionalities for both automated and manual testing.

o Characteristics: Features include intercepting proxy, automated

scanner, passive scanner, spidering, forced browsing, WebSockets

support, and more.

o Licensing: It is a free and open-source tool maintained under the

OWASP foundation.

• Burp Suite:

o Use: Primarily used for testing web application security. It's

somewhat similar to OWASP ZAP but often regarded as more

advanced and feature-rich, which makes it popular for

professional use.

o Characteristics: Key features include an intercepting proxy, web

application crawling, advanced scanning capabilities, and various

tools for manual testing.

o Licensing: There is a free (community) version available with

limited features. The professional version, with all features and

capabilities, is a paid tool.

• Metasploit:

o Use: Mainly used for executing exploit code against target

machines, usually to verify vulnerability. It's a penetration testing

tool that helps validate vulnerabilities that have been discovered.

o Characteristics: It offers payload creation, exploit execution, and

shellcode generation. Metasploit is also widely used for

developing, testing, and executing exploit code.

o Licensing: It has both a free version (Metasploit Framework) with

basic features and a paid version (Metasploit Pro) with advanced

features.

• Tenable Nessus:

24

o Use: It's a vulnerability scanner that scans networks to identify

vulnerabilities that could be exploited by attackers. Nessus

supports more than 100,000 known vulnerabilities.

o Characteristics: Nessus provides features like high-speed asset

discovery, configuration auditing, target profiling, malware

detection, sensitive data discovery, and more.

o Licensing: It is a commercial product with a paid license, although

a limited free version (Nessus Essentials) is available for personal

use.

In summary, while these tools all work in the field of cybersecurity, they each

have their own strengths and uses. OWASP ZAP and Burp Suite are mainly used

for web application security testing, Metasploit is best for executing exploit

code, and Nessus is an industry standard for network vulnerability scanning. The

choice of tool depends largely on the specific needs of the task at hand.

Alternatives for OWASP ZAP

OWASP ZAP (Zed Attack Proxy) is a popular open-source tool for penetration

testing and finding vulnerabilities in web applications. If you're looking for

alternatives, there are several other tools that you might consider, depending

on your specific needs:

• Burp Suite: This is one of the most popular alternatives to ZAP. Burp

Suite is a web application security testing toolset. Like ZAP, it includes an

intercepting proxy and automated scanner, but it also has numerous

other features such as intruder (for automated custom attacks), repeater

(for manipulating and resending individual requests), and sequencer (for

analyzing session tokens). It has a community edition with limited

features and a professional edition with full features.

• Netsparker: Netsparker is a web application security scanner focused on

automatically detecting SQL Injection and Cross-site Scripting (XSS)

vulnerabilities, among others. It's known for its Proof-Based Scanning

technology, which can verify vulnerabilities, reducing false positives.

• Acunetix: This is a fully automated ethical hacking solution that mimics a

hacker to keep one step ahead of malicious intruders. Acunetix can

detect a large variety of security vulnerabilities, including SQLi, XSS,

XXE, SSRF, and Host Header Attacks.

25

7.5 Setting up the architecture for the

project

7.5.1 A schematic for the entire architecture

Figure 11 - Project Architecture Schematic

A full high resolution view of this schematic can also be found on my website

alongside the other documents that were created for my internship project.

7.5.2 Full explanation of the schematic and the link between

components

The architecture of the initiative is crafted in a manner that integrates two

networks concurrently. On the one hand, we have the corporate network with

designated IP addresses that facilitates internet access, the engagement with

test project repositories, and the operation of all active applications. On the flip

side, there is the bespoke 'zapnet' network, which has been configured in each

of the Docker containers. This network, defined by software, enables seamless

and secure communication among individual containers in an isolated

environment.

A Resillion project repository will incorporate and employ a Maven artifact. This

artifact enables the project to leverage the Selenium web drivers set up by this

solution. The repository will instigate test suites via a pipeline, and these tests

will be allocated to a web driver which is directed towards a Selenium Grid for

execution in one of the nodes.

Each node has the capability to run browsers based on the preconfigured

settings injected into the web drivers. For the OWASP ZAP to monitor the traffic

and identify any vulnerabilities, the web drivers must be aligned to ZAP. Here,

ZAP functions as a proxy server that channels all the traffic. This proxy does not

impede the Selenium tests operating on the Grid. Rather, it simply allows all

traffic to flow unimpeded and logs any alerts or findings in its session.

Upon completion of all tests, irrespective of their success or failure, the results

will be documented in a ZAP scan XML file. This file can be imported into a

26

dashboard for structured data viewing and relevance assessment. The

automation of the ZAP session setup and result import should be executed

within an automated deployment pipeline.

7.6 Application containers and Java

implementation

7.6.1 Creating a Docker network

The first issue I need to address is to allow all the containers that I was going to

configure to communicate with each other. Docker containers by default are

isolated environments, which is great for general purposes. The type of complex

solution I need to build will require data to persist and to be passed on to other

containers to use or process. In order to achieve this, I need to create a Docker

network.

A Docker network is a software-defined network that enables different Docker

containers to communicate with each other. It also allows the outside world to

communicate with containers and vice versa. Docker networks can span multiple

machines, providing a lot of flexibility in how you can set up and structure your

applications.

Here are some reasons why Docker networks are used:

• Isolation: Docker networks provide network isolation, so containers can

have their own private networks, allowing you to better manage and

secure your containers.

• Communication: Docker networks allow for communication between

containers. By default, containers can communicate with each other if

they are on the same network. This is crucial for multi-container

applications where different components need to interact with each

other.

• Network Management: Docker networks simplify the process of

managing ports and network settings for your containers. Instead of

manually managing ports, Docker networks can manage these settings

for you, simplifying the setup process.

• Interoperability: Docker networks make it easier to ensure that your

application works the same way on different systems. By using Docker

networks, you can ensure that your application has the same network

setup regardless of where it's deployed.

• Service Discovery: Docker provides a built-in DNS server for containers

to use for automatic service discovery. When you create a container on a

Docker network, it can access others by their container name.

By default, Docker provides several network drivers for different use cases:

• Bridge: The default network driver for a container. If you don’t specify a

driver, this is the type of network you are creating. Bridge networks are

usually used when your applications run in standalone containers that

need to communicate.

• Host: For standalone containers, remove network isolation between the

container and the Docker host, and use the host’s networking directly.

• Overlay: This network enables swarm services to communicate with

each other.

• Macvlan: Macvlan networks allow you to assign a MAC address to a

container, making it appear as a physical device on your network.

27

• None: This network disables all networking for a container.

You can create a Docker bridge network using the Docker command-line

interface (CLI) with the network create command and specifying the driver as

bridge.

Here is the basic syntax:

docker network create -d bridge my_custom_network

In this command:

• docker network create is the command to create a new network.

• -d bridge specifies that the network driver type should be a bridge.

• my_custom_network is the name you want to give to your network.

Figure 12 - Docker Network

In this solution, the network is called ‘zapnet’ and it will be passed on to all the

different docker compose files in order to open up communication for all the

applications. This pre-existing network has to be specified in the compose file,

with the additional rule ‘external: true’ in order for the containers to find it.

7.6.2 Configuring OWASP ZAP

Figure 13 - OWASP ZAP Headless mode GUI

Since the OWASP ZAP application sits at the heart of the architecture, it’s crucial

that this is operational and properly configured. Since these images already

exist, a docker compose file with all the necessary configuration inside can be

created. There are multiple ways to run a ZAP instance, but the ideal one for

this scenario is headless mode. The reason for this is that the solution will not

utilize the GUI from ZAP, it just needs receive all the findings and keep them in

28

the database. While the ZAP application is running, it will provide an API

endpoint with which configuration and extracting the findings is possible.

The command for setting up ZAP in headless mode has a few parameters, so

when used in a Docker compose file, it needs to be added under the command

tag in order to overwrite the default docker compose command. One of the

items that is passed into this command is the API-key.

Figure 14 - OWASP ZAP API key

To secure this instance of ZAP, this API-key should not be hardcoded in the

compose file, but passed on as a variable that can be retrieved from a .env file.

The safest way to ensure expandability in the future, is to run the headless

command with xvfb.

Xvfb, or "X Virtual Frame Buffer", is a display server that performs all graphical

operations in memory without showing any screen output. This is extremely

useful for running applications that require a display, but don't actually need to

show anything on a physical screen. In other words, it's a way to run graphical

applications "headlessly".

When ZAP runs in headless mode, it doesn't need to display its graphical user

interface. However, ZAP uses the Selenium browser automation framework for

some of its features, and Selenium itself requires a display to operate, even if

it's being run headlessly.

By using Xvfb, a virtual display can be set up in memory for Selenium to use,

allowing ZAP to run fully headlessly and still take advantage of all its features.

This can be particularly useful when running ZAP in an environment where there

is no access to a physical display, such as a Docker container or a server

without a graphical environment installed.

The Docker container seems to be unhealthy all the time. After some extra

research I discovered that the health check will fail when running ZAP with a

port other than the default 8080. In that case, the ZAP_PORT environment

variable needs to be set in the environment file.

Figure 15 - OWASP ZAP API json

29

The ZAP API responds in json format, which is not ideal to work with in this case

because the information is not structured well and does not allow for filtering.

Further in this thesis, I will explore applications that can translate these ZAP

reports and findings into structured and visually appealing dashboards.

One of the key features of ZAP is that it scans passively. This means that all the

traffic that is being generated by the Selenium tests and web drivers will pass

through the ZAP proxy and everything it discovers will be recorded in the

application. This provides very good coverage but also a large problem: even

websites and URLs that are not being tested directly can also show up in scan

results. If a website utilizes Cloudflare or Stripe for instance, then those

endpoints will also be visible in the ZAP API scan results. This inclusion then

provides a problem for the active scanning, which will actively attack all

discovered endpoints. This is unwanted behavior, as it will attack websites out

of scope and those websites often have policies and countermeasures for

attacks, which leads to more problems.

In order to counter this, I explored the documentation and the API and found a

solution to this problem. I created two scripts that make some adaptations to

the ZAP instance at runtime. The first script ensures that the proxy server is

initialized. This is to make sure that all the Selenium tests will use this proxy.

The second script contains session configurations for the ZAP application and

sets a scope for the passive and active scan.

A session in ZAP represents all of the data related to a specific instance of ZAP

usage. This includes all the requests and responses that have been sent and

received, any alerts that have been generated, any scripts, breakpoints, and so

on. Essentially, it's a record of everything that's happened in a particular use of

ZAP. Sessions can be saved and loaded, allowing you to resume work at a later

time or share your work with others. By default, ZAP uses an HyperSQL

database to store the session data, but other database systems can be used if

preferred.

the concept of "scope" is used to limit the extent of actions that ZAP can

perform. For example, you might want to limit ZAP's spidering or active

scanning to only a certain subset of sites. This is useful for focusing on specific

targets and ensuring that ZAP doesn't interact with systems or sites that you

don't have permission to test. Scope is defined by a set of rules, such as which

URLs or IP addresses are in or out of scope. These rules can be defined

manually, or they can be automatically set based on certain criteria. Scoping

ensures that you are only testing what you're supposed to be testing, and it

helps to reduce noise in the results.

30

Figure 16 - Java Class to configure ZAP context

7.6.3 Creating a Selenium Grid

Figure 17 - Selenium Grid

The purpose of the Selenium Grid is to allow all the tests to be ran

simultaneously in parallel while taking advantage of the ZAP passive scanning

abilities in order to capture vulnerabilities as the tests pass through the proxy.

The project will utilize a full grid as it allows for much more configuration

options. The docker compose file that starts the grid can be expanded further

with additional nodes.

Each node represents a type of browser and version of that browser. The

included browsers are Chrome, Firefox and Edge. There are a few issues that

need to be addressed when configuring a grid like this.

There are several extra environment options that can be passed into each of the

nodes that require some attention:

• Stereotype: In order to identify the nodes, the name, version and

platform of the browser need to be specified

• Max Sessions: This is a tricky one. In theory this can be an infinite

number. However, the grid will only deploy as many as there are CPU

cores on the machine it uses.

31

• Session Timeout: This variable is normally not that important. It

indicates when a session should be terminated by force when it takes too

long to complete a certain test. In case of this project, some tests will

take several minutes to complete (because of complexity or deliberate

timeout). Therefore a higher timeout is needed for the tests to pass.

• TZ (Time zone): The default time zone is UTC, which is not ideal when

running tests in other countries. Some tests utilize time/date and are

prone to fail if the time zone is incorrectly set.

Figure 18 - Selenium Grid node Docker compose

Since Docker Desktop runs on Linux under the hood, it’s impossible (or very

hard and not worth the effort) to create grid nodes on any other platform than

Linux. When nodes are created with other platforms, they will deploy on the

grid, but none of them will be functional and all web drivers sent to them will

fail.

7.6.4 Writing Java Classes to instantiate web drivers

In order to create expandable and efficient code, it’s necessary to look at what

all the different web browsers have in common when it comes to configuration.

That way a base web driver class can hold all this common information and any

specific additional setup can be performed in a browser specific class. This took

some time to figure out, but I was able to distill the common features for a basic

allround webdriver.

When digging in the existing project repositories from Resillion, I noticed that

they used the WebDriver class to create web drivers for Selenium tests. These

open locally on your system, which is not solution I needed because the tests

need to access web pages that are proxied by the instance of ZAP over the

Selenium Grid. The solution to this was using the RemoteWebDriver class to

instantiate these browsers, because it allows for test runs on remote machines,

in this case the remote server.

In Selenium WebDriver, WebDriver is an interface, and RemoteWebDriver is a

class that implements the WebDriver interface.

WebDriver is an interface in Selenium that contains the declaration of various

methods like get(), findElement(), close(), etc. These methods provide the

functionality for browser automation, such as navigating to a URL, finding

elements, interacting with elements, and closing the browser.

32

RemoteWebDriver is a class that implements the WebDriver interface. This class

is designed to handle remote connections, allowing tests to be run on a separate

machine (the Selenium Server) rather than locally. RemoteWebDriver is the

parent class for the browser-specific driver classes like ChromeDriver,

FirefoxDriver, etc. It can be used to run tests on different browsers that are

located on remote machines.

Figure 19 - Java Class general RemoteWebDriver

Every web driver needs the customized proxy settings to point it to ZAP. Once

this proxy is initiated, it can be added to the web driver options. Figuring out

these was very tricky, as I needed a type of option that was applicable to all the

different web browsers. In a more simplified approach, web drivers have their

own options. A Chrome driver for instance, has ChromeOptions(). This cannot

be generalized and opens the door for more complex code an code repetition.

So after digging into the official documentation of Selenium and Java web

drivers, I found that Capabilities are what I was looking for.

Capabilities in a Selenium Java project are a set of key-value pairs that allow

you to customize the behavior of the WebDriver during automated testing. They

provide a way to specify properties of the browsers you want to use, such as

browser name, version, and platform, among other things.

The capabilities are defined by using the DesiredCapabilities class in Selenium

WebDriver. This class provides a series of static methods to create capabilities

33

for different browsers (like Firefox, Chrome, Internet Explorer, etc.), and to set

various browser properties.

The most important capabilities that I wanted to specify were:

• browserName: This capability sets the name of the browser to be used

for the tests. This could be "firefox", "chrome", "safari", etc.

• version: This capability sets the version of the browser to be used.

• platform: This capability sets the operating system platform. This could

be "WINDOWS", "MAC", "LINUX", etc.

• proxy: This capability sets whether the driver should use a customized

proxy server.

However, this wasn’t working because it also didn’t generalize well enough. It

worked fine for Firefox and Edge, but Chrome was not accepting the proxy

settings I defined for it.

After more research and tryouts, I discovered that MutableCapabilities were

giving me the results I needed.

MutableCapabilities is a base class introduced in later versions of Selenium to

create more flexible capabilities. The MutableCapabilities class is an

implementation of the Capabilities interface, and is the parent class of all

browser-specific options classes such as ChromeOptions, FirefoxOptions, etc.

In the context of Selenium WebDriver, MutableCapabilities was designed to

make it easier for users to set and manipulate browser-specific capabilities

without having to directly interact with the DesiredCapabilities class. This is

particularly useful as the trend is moving away from using DesiredCapabilities

directly due to its static nature.

MutableCapabilities provides a flexible way to set browser-specific capabilities. It

makes it easier to customize the behavior of the WebDriver and to adapt it to a

wide range of testing scenarios.

7.7 Working on a live project

7.7.1 OWASP Juice Shop

Initially I conducted all tests for ZAP and the Selenium Grid on the OWASP Juice

Shop, an open-source project developed by OWASP.

The OWASP Juice Shop is specifically a vulnerable web application designed to

be used as a learning tool for security enthusiasts, developers, and students.

The purpose of the Juice Shop is to educate about web application security in a

fun and interactive way.

The application itself is a "juice shop" where users can browse products, leave

reviews, and make purchases, much like a real online retail store. However, it is

intentionally designed with many security flaws. These flaws range from simple

ones that might be found in beginner-level tutorials, to complex, nuanced issues

that even experienced professionals might struggle with.

Users are encouraged to identify and exploit these security issues, in a process

known as penetration testing or "ethical hacking". This can help them

understand how such vulnerabilities arise, how they can be exploited, and most

importantly, how they can be prevented or fixed. The Juice Shop includes a

34

scoreboard where users can check if they have found all the available

vulnerabilities, providing a gamified learning experience.

It's worth noting that the Juice Shop is fully self-contained and can be run

locally, so there's no risk of legal issues that might arise from attempting to

hack a real web application without permission.

After the promising results of my Java classes and the Selenium Grid, I asked

Martijn if I could start implementing this on a real project from Resillion. This

would allow me to scale up the solution and encounter new problems to tackle,

aiming for more generalization so that the solution could be expanded to other

projects in the future.

7.7.2 Greenvalley Project

I searched and asked for a project that was also written in Java to easily

translate and transform my existing solution to match the needs of this project

and by extension all other Java projects. This project turned out to be

Greenvalley. After getting access to the repository and the source code, I was

able to start contemplating about a solution to elegantly introduce my selenium

grid and web drivers into this project.

7.8 Scalability through generalization

7.8.1 Maven Artifact

In Azure DevOps, an artifact is a collection of files or packages produced by a

build or a release during the process of software development. These artifacts

serve as the dependencies of a deployment process or as a published outcome

of your pipeline.

Artifacts can include:

• Compiled code: This is the code that has been compiled into a runnable

state. This could be a .jar file for Java applications, a .dll file for .NET

applications, or an .exe file for Windows applications.

• Packages: This refers to software packages that are ready to be

deployed or distributed. This could include NuGet, npm, or Maven

packages.

• Test results: The results of your automated tests can also be

considered artifacts. These can include reports, logs, or any other files

that were generated during testing.

• Documentation: If your build process generates documentation (like

Javadoc or Sphinx), these files can also be considered artifacts.

In Azure DevOps, you can publish artifacts during a build using the Publish Build

Artifacts task, and then use these artifacts in subsequent stages of your

pipeline. In a release pipeline, you can consume these artifacts to deploy your

application.

Also, Azure Artifacts is a feature of Azure DevOps that allows you to host and

share packages, such as Maven, npm, NuGet, and Python packages, with your

team. You can publish these packages to Azure Artifacts for sharing with your

team or across your organization.

35

Creating a Maven artifact in an Azure DevOps repository allows you to use Azure

DevOps as a private repository for your Maven packages, which can be

beneficial in a few ways:

• Version control: You can keep track of different versions of your Maven

packages and ensure that every team member is working with the

correct version.

• Security: Hosting your Maven packages on a private repository like

Azure DevOps means that you have more control over who can access

and use your packages.

• Ease of use: Azure DevOps integrates well with many other tools,

making it a convenient choice if you're already using Azure for other

parts of your project.

Here are the general steps to create a Maven artifact in an Azure DevOps

repository:

• Create a feed.

• Connect to the feed.

• Update your Maven settings: Copy the settings.xml provided by Azure

DevOps and paste it into your Maven .m2 directory.

• Update your project's POM file: In your Maven project's pom.xml file, you

need to add a <distributionManagement> section that points to your

Azure DevOps feed.

• Deploy your Maven package.

Figure 20 - Maven Artifact (Azure Devops)

By creating an actual Maven package, I also had to learn about and follow the

rules on semantic versioning, a versioning scheme for software that aims to

convey meaning about the underlying changes in a release. It follows a version

format of X.Y.Z (Major.Minor.Patch).

1. Major (X): This number is incremented when there are incompatible

changes in the API, meaning the software has changes that may

break or are not backward-compatible with older versions. This often

means that users will need to make changes in their existing setup to

use this version. This was not necessary for my library.

2. Minor (Y): This number is incremented when new features are

added in a backwards-compatible manner. The software remains

compatible with older versions, and users can use the new version

without making any changes in their existing setup (though they

might not be able to use the new features without some changes). I

used this when adding the builder design pattern to the library.

36

3. Patch (Z): This number is incremented when backwards-compatible

bug fixes are introduced. These are usually small changes that fix

errors or bugs in the software without adding any new features.

These were constantly updated, whenever I fixed errors or made

small changes to the code without introducing new features.

Figure 21 - Gridbuilder Artifact overview

7.8.2 Java builder pattern

I found myself struggling with the web drivers I created because, when

implemented in an actual project with different cases, it became clear that

flexibility was necessary to adapt to any given case instantly, without having to

rewrite code or introducing complexity. Some features of a web driver needed to

be added or removed as needed and weren’t always necessary to begin with. It

was at this point that I asked for some help from my mentor, who gave me

valuable insights in the Builder design pattern.

The Builder pattern is a design pattern that provides a flexible solution to the

problem of creating complex objects step by step. It falls under the category of

"creational" design patterns. This pattern separates the construction of an

object from its representation, allowing the same construction process to create

different representations.

When constructing an object involves many steps, particularly if those steps

don't have to be performed in a specific order or some steps are optional, the

Builder pattern can be a good choice.

37

Figure 22 – Builder design pattern examples

By adapting my code to this designer pattern, I could easily specify different

scenarios. Sometimes the default settings were sufficient, in other cases the

browser or version could be changed instantly. If a browser needed to be run in

headless or incognito mode, the builder pattern allowed for complete flexibility

in creating a RemoteWebDriver as it was needed to perform a given test.

Figure 23 - Builder optional methods

Another benefit to this approach is that it becomes fairly simple to adapt any

existing project to use the Selenium Grid instead of a local web driver. Since a

local web driver can be instantiated in one line of code, I aimed to create a

RemoteWebDriver in no more than that. The builder pattern gave me that

possibility, since every option is now a method that can be chained until a build

point, after which the driver is executed in the grid. This together with the

Maven artifact (package) created a very elegant solution that is both non-

intrusive and easy to implement.

38

Figure 24 - Session builder in Greenvalley code

7.9 Dashboarding tools research

7.9.1 Dashboard tool requirements

First of all, I needed to figure out what good requirements are for a

dashboarding tool for vulnerabilities in an enterprise environment. To gather

this knowledge, I held a presentation for the Dutch security department from

Pieter Meulenhoff to explain the goal of the project and what it would

accomplish. This meeting also served as an intake for me to gather knowledge

on important requirements for such a dashboarding tool. This gave me the

following key features and information:

• Centralized Reporting: The tool should be able to collate data from

various sources and present it in a centralized, easily accessible

dashboard. This should include data from automated scans, manual

testing, and other security assessment activities.

• Real-Time Updates: In the context of security, time is of the essence.

The tool should provide real-time or near-real-time updates about

identified vulnerabilities, their status, and any remediation activities.

• Risk Prioritization: Not all vulnerabilities carry the same level of risk.

The tool should be able to prioritize identified vulnerabilities based on

their potential impact and the likelihood of their exploitation. This helps

teams focus their remediation efforts on the most critical issues first.

• Risk Mitigation: The ability to mark certain vulnerabilities as false

positives or exclude them from upcoming scan rounds is essential. Even

in automated reporting, the results still need some manual feedback.

Being able to deduplicate similar findings and create exclusions,

significantly lowers the time needed to audit scan results.

• Integration Capabilities: The tool should easily integrate with other

systems used in the software development lifecycle, such as bug tracking

systems, continuous integration/continuous deployment (CI/CD)

platforms, and other security tools. This enhances workflow and ensures

that the tool fits well within the existing infrastructure.

• Customizability: Every organization has different needs and processes.

The tool should offer customization options that allow it to be tailored to

the specific requirements of the organization.

• User-Friendly Interface: The tool should be easy to use, with a clear,

intuitive interface. This reduces the learning curve and allows teams to

start benefiting from the tool as quickly as possible.

• Scalability: As the organization grows, the tool should be able to scale

and handle an increasing load without performance issues.

With these features in mind, I conducted a search and tested several

applications to see if they met the requirements for this integration. After initial

research and consulting Pieter, I came up with three contenders for the job:

Faraday, Cervantes and Defect Dojo.

39

7.9.2 Application Comparison

Faraday is an Integrated Penetration-Test Environment (IPE) that is designed

to enable collaborative work among pentesters from the discovery phase to the

delivery of the final report. It offers features like multi-user support, real-time

collaboration, a centralized knowledge database, and more. Faraday also has a

feature that supports data import and export from and to various formats, which

can be used to import and export data from other tools like Nessus, Burp Suite,

and QualysGuard.

Cervantes, on the other hand, is a vulnerability management tool that enables

teams to manage and keep track of vulnerabilities in a centralized manner. It

allows teams to import scan data from various scanning tools and manage them

in one place. It also has an integration feature that enables you to integrate

with DefectDojo with just one click.

DefectDojo is an open-source application vulnerability management tool. It has

several core data classes including Product Type, Product, Engagement, Test,

Finding, and Endpoint. Each class has a different function in the vulnerability

management process. For example, a 'Product' is any project, program, or

product currently being tested, while a 'Finding' represents a discovered flaw

during testing.

DefectDojo also has a tagging system that facilitates the organization within

each level of the data model, with tags being used for grouping objects,

filtering, and tag inheritance. The tool also offers different ways to manage tags,

such as creating or editing new objects, import and reimport, and bulk edit

menu.

The tool also provides example workflows, like for a security engineer or a QE

manager, which involve registering a new product, creating a new engagement,

and adding tests and findings. Findings can be assigned a severity, and a report

can be generated to send to the development team. Alerts are also given for

bugs that persist longer than they are supposed to based on their severity.

40

7.9.3 Defect Dojo

Figure 25 - Defect Dojo main view

After testing with several other applications, Defect Dojo was chosen because it

delivered on the most important requirements and has an API that can be used

to automate the import of zap scans.

DefectDojo has a powerful tagging system that helps in organizing and filtering

objects within each level of the data model. Tags can be added and removed

when creating or editing objects, during import or reimport of tests, or via the

bulk edit menu for findings. The tagging system also allows for effective filtering

of findings based on different criteria, and it supports tag inheritance, where

tags applied to a given product are automatically applied to all objects under

that product in the data model.

I started importing the Greenvalley test scans after their daily test run. This

import was achieved through the API. Exporting the ZAP scan xml file had to be

done manually to extract it from the Docker container. But once the scan was

copied to the server, it could be imported in Defect Dojo through the API.

Each scan could be assigned to a customer and project, allowing the scans to be

grouped together. This grouping then facilitated the mitigation of found

vulnerabilities and also ensured deduplication of similar findings.

41

Figure 26 - Defect Dojo vulnerability overview

7.10 CI/CD pipeline integration

7.10.1 Docker restart policy

Since all containers need to be up and running all the time, all Docker

containers need to have a restart policy set. The restart policy in a Docker

Compose file dictates what should happen if a service's container crashes. There

are several options, so I need to research these options first in the official

documentation.

• "no": This is the default policy. It means that if a container crashes,

Docker will not attempt to restart it.

• "always": If you set the restart policy to always, Docker will always

restart the container if it stops. If it is manually stopped, it is restarted

only when Docker daemon restarts or the container itself is manually

restarted.

• "on-failure": Docker will only restart the container if the container exits

with a non-zero exit status (i.e., there was an error). You can optionally

specify a maximum number of times Docker should try to restart the

container.

• "unless-stopped": Docker will always restart the container unless it is

manually stopped.

Since I want control over the container in case I need it to shut down, the

‘unless-stopped’ policy is the one most suitable for the job. So this policy will be

added to all the Docker compose files to keep everything up and running unless

specifically requested to exit.

7.10.2 Ansible Deployment

For deployment automation on the server, Ansible is a very good solution as it

provisions and deploys all the software on the server using a very simply

principle: a playbook. In essence, this is a scenario that unfolds step by step

until all the actions have been successfully completed.

To create this Ansible deployment a few key features are needed:

42

- vars.yml

- inventory.yml

- ansible.cfg

First off all, a vars.yml file needs to be created that holds all the sensitive

information that will be passed on to the various components. The information

in this file will be templated. In Ansible, templates are a way to manage entire

configurations or configuration files. Ansible uses the Jinja2 templating engine to

process templates. A template in Ansible is a file that defines an infrastructure

configuration with variables that will be replaced by actual values when the

template is used during a playbook execution.

Figure 27 - Ansible vars.yml

The use of templates in Ansible allows for greater flexibility and reusability in

your configurations. You can define a configuration once, as a template, and

then reuse that template across multiple tasks or roles, with different variable

values each time.

An inventory.yml file will also be necessary. In this file all the hosts on which

the deployment has to be fulfilled, can be specified bv name. Users and IP

addresses can be added here. It’s very important to initialize an ansible.cfg

configuration file. This can be done with the following command:

`ansible-config init --disabled > ansible.cfg`

The inventory line must be commented out and the filename specified in order

for deployment to succeed. Without this, the main.yml playbook cannot discover

where to find its hosts.

Figure 28 - Ansible config file

Utilizing the vars.yml file which holds all the sensitive information, Ansible will

run a playbook defined in the main.yml file. As the word suggests, this playbook

will execute all the steps in sequence on all the predefined host machines.

43

Figure 29 - Ansible Playbook

After setting all the hosts and the environment variables, the playbook will run a

series of tasks in sequence. Figuring out this step by step approach is quite

daunting at first, but becomes pretty clear after an initial setup. The scenario for

this project consists of three steps:

1. Git clone the latest version of the repository in the specified working

directory

2. Ensure that all the environment files for the different applications are

copied to the right destination in the cloned repository. This is where the

templates are used.

3. Start all the necessary containers and applications. Some containers

require specific extra configuration or variables to be passed along.

7.10.3 Release pipeline on Azure Devops

The Ansible playbook allowed for easy deployment of all my containers and

applications, but it still needed to be triggered manually. In order to have a full

CI/CD compliant solution, I needed to create a pipeline that would trigger the

Ansible playbook whenever changes were made to the project repository. This

was achieved through the Azure Devops release pipeline.

A release pipeline in Azure DevOps is a way to automate the deployment of your

application in different environments. It's part of Azure DevOps' built-in

continuous delivery (CD) platform, and it's designed to work with the build

pipelines that provide continuous integration (CI) capabilities.

A typical release pipeline has the following attributes:

• Artifacts: The release pipeline takes as input the artifacts produced by

one or more build pipelines. These can be application binaries, scripts,

configuration files, etc.

• Stages: The pipeline is divided into stages, each corresponding to an

environment where the application needs to be deployed (for example,

Dev, Test, Staging, and Production). Each stage can have its own set of

tasks and configurations.

• Tasks: Within each stage, you define a series of tasks. These tasks are

the actual steps required to deploy your application, such as copying

files, running scripts, provisioning infrastructure, etc.

• Triggers: You can set up triggers to start the pipeline automatically when

new artifacts are available (continuous deployment), or you can start it

manually.

44

• Approvals: For critical stages (like deploying to Production), you can set

up approvals. The pipeline will pause at these points and wait for a

designated person or persons to manually approve before proceeding.

For my application, the most important configuration was situated in the Stages.

A pipeline can be composed of multiple stages, and each stage is a logical

boundary in the pipeline. A stage can represent a part of your CI/CD process.

Commonly, stages are synonymous with the environment where you're

deploying your application, such as development (Dev), testing (QA), staging

(Staging), and production (Prod).

Each stage in a pipeline consists of one or more jobs. A job represents an

execution boundary of a set of steps. All of the steps run together on the same

agent. For example, you might have one job that builds your application,

another that runs tests, and a third that deploys your application. You can run

jobs sequentially or in parallel.

Within each job, there are tasks. Tasks are the smallest unit of work in Azure

DevOps pipelines. Each task performs a specific action, such as invoking a

script, running a command, or deploying to a target environment.

Figure 30 - Release setup and stages

I spent some time figuring out which jobs where necessary to complete the

entire deployment.

I needed to:

- Install and use Python 3.10

- Install the requirements from the requirements.txt file

- copy the vars.yml file from the server to the repository

- run the playbooks (the local one and the remote one)

45

Figure 31 - Release jobs

Figure 32 - Successful releases upon repository update

46

7.11 Future project goals

7.11.1 Expandibility to other projects/languages

For the scope of this project, the whole solution with RemoteWebDrivers was

based on a Maven Java project setup. Not all projects will have this fundament

and in order to expand the testing of all projects in the company portfolio,

additional languages and frameworks will have to be implemented. The overall

architecture can remain, since the grid will accept any remote browser,

regardless of the language it was written in.

7.11.2 Using Burp Suite instead of OWASP ZAP

The security department in the Netherlands uses Burp Suite instead of OWASP

ZAP as a man-in-the-middle proxy. Burp Suite is not free, it has a licensed

model instead. For this reason it was not implemented in this internship project.

However, since it has many powerful features, it’s worth looking at for future

expansions on this project.

Burp Suite is a comprehensive platform developed by PortSwigger for web

application security testing. It consists of several tools that work together to

assess the security of web applications. Burp Suite's key components include

the Intercepting Proxy, Spider, Scanner, Intruder, and Repeater.

Advantages of Burp Suite:

• User-Friendly Interface: Burp Suite offers a well-designed and

intuitive user interface, making it relatively easy to navigate and use.

• Extensibility: It provides extensive extensibility through its support for

plugins and extensions, allowing users to customize and enhance its

functionality.

• Advanced Automation: Burp Suite offers powerful automation

capabilities, enabling users to automate repetitive tasks and streamline

the testing process.

• Active Scanner: Burp Suite's active scanner performs automated

vulnerability scanning and provides detailed results and potential security

issues.

• Mature and Widely Used: Burp Suite has been around for a long time

and has a large user base. It has a strong community support, regular

updates, and is widely recognized as a reliable tool.

7.11.3 Report portal and Surefire fix for parallel testing

When running tests in parallel on the Selenium Grid, the logging on Reportportal

becomes a nested cluster of information. The test results are no longer

structured in a comprehensible manner, which renders the test run invalid and

obsolete. Solving this issue depends on updates from the

packages/dependencies in the main project.

7.11.4 CI/CD streamlining (automated importing in Defect Dojo)

For now all the CI/CD automation was performed with one client and one project

for that client in mind. This allowed for very easy and basic import of the scan

47

results, since they always pointed to the same direction. However, when

running multiple test suits at once, these tests and especially their findings

should be kept separate and directed to the right place in the application. This is

to ensure that all data that passes through, is correctly tagged and reported.

7.11.5 Linking vulnerabilities to specific tests

For now, the remote web drivers do not have an id or something to recognize

them with. This means that it’s easy to retrieve any endpoints that failed, but

it’s hard or nearly impossible to see what event triggered the failure of the test.

Going through all the documentation, discoveries were made. This lack of

transparency can be countered by adding custom headers to the remote web

drivers to identify them in the Selenium Grid.

7.11.6 DefectDojo on company level

DefectDojo has proven that is very elaborate and it seems to have all the

necessary tools necessary to perform the task of providing an efficient and

valuable dashboard solution for vulnerabilities. In order to fully reap the benefits

of this tool, there will be need for a broader approach so that testing and

reporting on vulnerabilities becomes embedded in the overall workflow of the

company. This will require more testing of this application and working out a

norm and standard of how it will be used within Resillion.

48

8 BIBLIOGRAPHY

Ansible playbooks — Ansible Documentation. (n.d.). Docs.ansible.com.

Retrieved June 14, 2023, from

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_intro.

html#playbook-syntax

Builder. (2014). Refactoring.guru. https://refactoring.guru/design-

patterns/builder

DefectDojo. (2023, June 14). GitHub. https://github.com/DefectDojo/django-

DefectDojo

Docker Desktop overview. (2021, December 23). Docker Documentation.

https://docs.docker.com/desktop/

Docker images for the Selenium Grid Server. (2023, June 14). GitHub.

https://github.com/SeleniumHQ/docker-selenium

Finding web elements. (n.d.). Selenium. Retrieved June 14, 2023, from

https://www.selenium.dev/documentation/webdriver/elements/finders/

Grid. (n.d.). Selenium. https://www.selenium.dev/documentation/grid/

OWASP ZAP – Getting Started. (n.d.). Www.zaproxy.org.

https://www.zaproxy.org/getting-started/

OWASP ZAP – ZAP Docker Documentation. (n.d.). Www.zaproxy.org. Retrieved

June 14, 2023, from https://www.zaproxy.org/docs/docker/

ramiMSFT. (2022, November 28). Get started with Maven packages - Azure

Artifacts. Learn.microsoft.com. https://learn.microsoft.com/en-

us/azure/devops/artifacts/get-started-maven?view=azure-devops

RemoteWebDriver. (n.d.). Www.javadoc.io. Retrieved June 14, 2023, from

https://www.javadoc.io/static/org.seleniumhq.selenium/selenium-

remote-driver/4.0.0-alpha-

3/org/openqa/selenium/remote/RemoteWebDriver.html

49

SAST vs. DAST: difference and how to combine the two | Snyk. (n.d.). Snyk.io.

https://snyk.io/learn/application-security/sast-vs-dast/

vijayma. (2023, January 11). Use SSH key authentication - Azure Repos.

Learn.microsoft.com. https://learn.microsoft.com/en-

us/azure/devops/repos/git/use-ssh-keys-to-authenticate?view=azure-

devops

